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Abstract

A common approach to characterizing a sensory neuron’s response
to stimuli is to use a probabilistic modeling approach. These mod-
els use both the stimulus and the neuron’s response to the stimulus
to estimate the probability of the neuron spiking, given a particular
stimulus. This project will investigate some of the well known ap-
proaches, starting with simple linear models and progressing to more
complex nonlinear models. One technique for fitting the parameters
of the model uses the idea of a “linear receptive field” to characterize
a feature subspace of the stimulus in which the neuron’s response is
dependent. Another parameter fitting technique that has been used
with success is a likelihood-based method that can lead to efficient
model parameter estimation. This project will examine both linear
and nonlinear models, and use both the feature subspace technique
and the maximum likelihood technique to fit the parameters of the
appropriate model.
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1 Introduction

A fundamental area of interest in the study of neurons is the relationship
between the stimuli and the neural response. This relationship has been
modeled using various approaches, from the estimation of the neuron’s fir-
ing frequency given by the integrate-and-fire model [1] to the set of nonlinear
differential equations given by the Hodgkin-Huxley model [2].

More recent approaches have utilized a probabalistic modeling frame-
work for sensory neurons (neurons in the visual or auditory pathways, for
example). Since techniques in neuroscience are now able to supply us with
increasingly detailed physiological data, and since the nervous system itself
is probabalistic, this statistical description of a neuron seems like a natu-
ral avenue of exploration [4]. The following sections detail both linear and
nonlinear models, as well as two of the techniques used to estimate the
parameters of the given models.

2 Linear Models

The goal of the linear models is to represent the selectivity of the neuron’s
response to particular features of the stimulus. This selectivity means that
certain regions of the stimulus space, called the feature subspace or the
receptive field, are more important than others in determining the resulting
action of the neuron. The linear models operate by projecting the stimulus
onto these lower dimensional subspaces, then subsequently mapping this
projection nonlinearly into a firing rate. This firing rate is interpreted as a
rate parameter for an inhomogeneous Poisson process that will then give us
the probability of the neuron spiking [4].

For the remainder of the paper we will assume that we are modeling
a sensory neuron in the visual cortex. The stimulus is a single grayscale
pixel that stays the same value for a fixed time interval ∆, then changes
value instantaneously. This stimulus is represented by a stimulus vector
s̄(t), where each entry is the pixel’s value for a time duration of ∆. The
response data is a list of times that the neuron spiked during presentation
of the stimulus.

It should be noted than when describing this model as “linear”, we are
refering to the manner in which the stimulus is processed before a nonlinear
function maps this into the rate parameter. The form of the linear model
described above is called the Linear-Nonlinear-Poisson (LNP) model, and is
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given by the equation
r(t) = F (k̄ · s̄(t)) (1)

where k̄ is the linear receptive field, ¯s(t) is the stimulus, F is a nonlinear
function, and r(t) is the resulting rate parameter. The linear receptive field
k̄ is what we wish to find, s̄(t) is a portion of the stimulus whose size depends
on the size of k̄, and F is generally a sigmoidal function that ensures the
firing rate is not negative. The next three sections will develop different
ways in which to estimate k̄ and F , the unknowns of this equation.

2.1 The LNP using Spike-Triggered Average

The first way in which I will be estimating the parameters of the LNP
is through a technique called the Spike-Triggered Average (STA). The STA
assumes that the neuron’s response is completely determined by the stimulus
presented during a predetermined time interval in the past, and is defined
as the mean stimulus that elicited a spike [7]:

STA =
1

N

N∑
n=1

s̄(tn) (2)

where N is the number of spikes elicited by the stimulus and s̄(tn) is the
stimulus that elicited the nth spike. Defined in this way, the STA is a linear
receptive field that the neuron is responsive to, and filtering the stimulus
through the STA projects the stimulus onto a lower-dimensional subspace.
As long as the input stimulus is spherically symmetric, we can use the STA
as the estimate for the linear filter k̄ in the LNP model [7].

Now that the filter has been determined all that is left is to estimate
the nonlinearity F . In theory we can choose a parametric form of F and fit
the parameters using the given data; however, in practice an easier solution
is sought. The literature commonly uses what is known as the “histogram
method”, which essentially creates a discretized version of F [3]. The input
space of k̄ · s̄(t) is divided into bins and the average spike count of each bin
is calculated using k̄, s̄(t) and the known spike times. In this way we recover
a function that has a single value for each bin, and new data can be tested
on the model by filtering the new stimulus with k̄ and using the resulting
bin value to estimate the firing rate.

2.2 The LNP using Maximum Likelihood Estimates

The drawback to the STA technique is that it requires the stimulus data to
be spherically symmetric. In order to make the LNP model more powerful
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we need to develop a new way to estimate the parameters of the model
without this restriction. The Generalized Linear Model (GLM) is one such
way to accomplish this task by using Maximum Likelihood Estimates to
estimate the parameters of equation (1).

The LNP model of neural response produces a rate parameter r(t) to an
inhomogeneous Poisson process. If y is the number of observed spikes in a
short time ∆, the conditional probability of this event is given by

P (y|r(t)) =
(∆r(t))y

y!
e−∆r(t). (3)

If we are now interested in observing an entire spike train Y , which is a
vector of spike counts yi binned at a time resolution of ∆, the conditional
probability of this event is given by

P (Y |r(t)) =

N∏
i=1

(∆r(t))yi

yi!
e−∆r(t) (4)

where the product runs over each element of the spike count vector Y . Nor-
mally we would view this equation as the probability of the event Y given
the rate parameter r(t). Instead we want to look at it from a different per-
spective: what is the likelihood the the rate parameter is r(t), given that the
outcome was Y (and that we are using a Poisson distribution specifically)?
Viewed in this way equation (4) becomes a function of the rate parameter
r(t), and is known as the likelihood function [5]:

P (r(t)|Y ) =

N∏
i=1

(∆r(t))yi

yi!
e−∆r(t). (5)

The maximum value of this function, known as the maximum likelihood,
will be the parameters of equation (1) that are most likely to produce the
spike train Y , and these are the parameters that we wish to find.

In practice it is easier to work with the log-likelihood function, since it
transforms the product into a sum. The parameters that maximize the log-
likelihood function will be the same parameters that maximize the likelihood
function due to the monotonicity of the log function. The log-likelihood is
often denoted using L so that, after taking the log of the likelihood function
and ignoring constant terms, equation (5) becomes

L(r(t)|Y ) =

N∑
i=1

yilog(r(t))−∆
N∑
i=1

r(t). (6)

4



At this point we have an optimization problem to solve involving the
linear filter k̄ and the nonlinear function F . Fortunately, it has been shown
by Paninski in [6] that with two reasonable restrictions on the nonlinear
function F the log-likelihood function is guaranteed to have no non-local
maxima, which avoids computational issues associated with numerical ascent
techniques. The restrictions are 1) F (u) is convex in its scalar argument u
and 2) log(F (u)) is concave in u.

In the literature ([6],[9],[11]) it is common to choose a parametric form
of F that follows these restrictions, like F (u) = eu or F (u) = log(1 + eu),
and then optimize the function over the filter k̄ and the parameters of the
function F . The use of maximum likelihood estimates for the parameters
of the model is a powerful technique that extends the nonlinear models
considered later in the paper. I will also be interested in employing some
form of regularization in my implementation of the GLM (and nonlinear
models), which reduces overfitting of the model to noisy data.

2.3 The Spike-Triggered Covariance

The Spike-Triggered Covariance (STC), much like the STA, uses the idea of
projection onto linear subspaces of the stimulus to reduce the dimensionality
of the input to the model while still allowing the reduced input to maintain
the salient features of the original.

The STA can be interpreted as the difference between the means of the
raw stimulus data and the spike-triggering stimulus data. The STC builds
on this idea and is defined as the difference between the variances of the raw
stimulus data and the spike-triggering stimulus data:

STC =
1

N − 1

N∑
n=1

[
s̄(tn)− STA

][
s̄(tn)− STA

]T
(7)

Once we have constructed the STC from the data, we want to perform
what is essentially a principal component analysis on the STC to ascertain
which directions in stimulus space have the smallest and largest variances.
For the purpose of this project I will only be interested in the direction
with the smallest variance, though the technique is not limited to this. The
direction of smallest variance is the eigenvector associated with the small-
est eigenvalue. Any stimulus vector with a significant component along the
direction of this eigenvector has a much lower chance of inducing a spike re-
sponse, hence this direction is associated with an inhibitory neural response.

With this information in hand we can now use the STA, associated with
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an excitatory neural response, and this new vector recovered from the STC
analysis, to construct a model that uses both of these subspace features to
filter the data. The new model becomes

r(t) = F (k̄e · s̄(t), k̄i · s̄(t)) (8)

where k̄e and k̄i denote the excitatory and inhibitory filters, respectively.
Now all that remains is to fit the nonlinear function F . Again we could
fit a parametric form to the function and estimate its parameters, but like
the STA technique we will use the histogram method, binning the possible
values of (k̄e · s̄(t), k̄i · s̄(t)) and computing the average spike count for each
bin. Notice that this method will work with at most two filters (visually, at
least); with more than two filters parameter estimation would be a better
choice.

3 Nonlinear Models

What makes the linear models attractive are their ability to fit the data
well, the tractability in estimating their parameters, and the fact that some
of these parameters can be interpreted biologically. However, this method of
linear stimulus processing fails to capture some of the more subtle features
of a neuron’s response; this is where the nonlinear models come in.

The nonlinear models are a natural extension of the linear model, and
in their general form are given by the equation

r(t) = F
(
f1(k̄1 · s̄(t)), f2(k̄2 · s̄(t)), . . . , fn(k̄n · s̄(t))

)
(9)

where the fi’s can be combined in any manner. Increasing evidence in neuro-
science literature suggests that neural processing is performed by summing
over excitatory and inhibitory inputs [11]; this fact, combined with increased
ease of parameter estimation, leads us to make the assumption that the in-
puts of the nonlinear models will be combined as a weighted sum, in which
case the nonlinear models are given by the equation

r(t) = F

(∑
i

fi(k̄i · s̄(t))
)
. (10)

The next two sections will examine particular instances of equation (10) and
how the parameters are fitted.
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3.1 The Generalized Quadratic Model

The Generalized Quadratic Model (GQM) is an intuitive first step into the
realm of nonlinear models. It simply adds a quadratic term and a constant
term to the LNP model considered in equation (1), given by

r(t) = F
(1

2
s̄(t)Cs̄(t) + b̄T s̄(t) + a

)
, (11)

where C is a symmetric matrix, b̄ is a vector, and a is a scalar [9]. Similar
to the implementation of the GLM, we want to choose a parametric form
for the nonlinearity F and maximize the resulting log-likelihood function to
estimate the parameter values of C, b̄ and a.

3.2 The Nonlinear Input Model

The implementation of the Nonlinear Input Model (NIM) is the overarching
goal of this project. The NIM considers the Poisson rate parameter to be a
function of a sum of nonlinear inputs that are weighted by ±1, corresponding
to excitatory or inhibitory inputs [11]. The equation, similar to equation
(10), is given by

r(t) = F

(∑
i

wifi(k̄i · s̄(t))
)
, (12)

where the values of wi are restricted to ±1. This model can also be thought
of as a two-layer LNP model, or an LNLN model: The stimulus s̄(t) is
projected onto various subspaces by the filters ki; the functions fi transform
these projections nonlinearly, and the results are summed and used as an
input to the larger nonlinear function F , which in turn gives a rate for the
inhomogeneous Poisson process.

For the purposes of this project I will assume parametric forms of the
fi and F to make parameter fitting easier, though in practice the NIM
can also fit these functions without an assumed parametric form using a
set of basis functions. The fi’s will be rectified linear functions, where
fi(u) = max(0, u); F will be of the form F = log(1 + eu), which guarantees
no non-global maxima in the case of linear fi’s and will in practice be well-
behaved for the rectified linear functions [11]. With these assumptions made,
the gradient ascent routine will only need to optimize the filters ki.
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4 Databases & Implementation

The initial dataset that I will use to develop the above models is from a
Lateral Geniculate Nucleus neuron’s response to a single pixel of temporally
modulated white noise stimuli, found at http://www.clfs.umd.edu/biology-
/ntlab/NIM/. The data consists of two parts, one for fitting and one for
testing. The first is a stimulus vector that contains the pixel value, changing
every 0.0083 seconds, for 120 seconds which gives a total of 14, 391 values.
Along with this is a vector that holds the time in seconds at which a spike
was recorded. The second part of the data consists of a 10 second stimulus,
again changing every 0.0083 seconds, and 64 separate trials during which
spike times were recorded.

Additional datasets for testing and validation will be simulated data from
other single neuron models. In general the models that I will be developing
will require fitting one or two filters, each of which can contain up to 100
parameters that need to be fitted.

All software development will be performed on my personal computer,
a Dell Inspiron 1525 with an Intel Core 2 Duo processor and 3GB of RAM.
The programming language will be MATLAB.

5 Validation

Implementation of all the above models will be performed in a modular fash-
ion, allowing the individual validation of each module.

For the STA model, it will be necessary to know if the averaging tech-
nique is implemented properly. To validate this part of the code, I will
artificially create a stimulus pattern and the resulting spike times. Each
spike will occur after a particular spatiotemporal stimulus, which will be
the same each time. The rest of the stimulus will be comprised of Gaussian
noise. The implementation of the STA will be validated if it is able to re-
cover the artificial STA.

The STC model can be validated in a similar manner. I will arbitrarily
choose two filters and combine them in such a way that one is excitatory
(increases the firing rate) and one is inhibitory (decreases the firing rate).
I will again artificially create a stimulus pattern and use the Nonlinear In-
puts Model to simulate spike generation. From this stimulus pattern and
the resulting spike times I can use the STC analysis to produce two linear
filters as described above, which should match the artificially created filters
to within some tolerance.
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Validating the implementation of the maximum likelihood estimates will
be of great importance, the main component of which is the gradient ascent
algorithm. I will implement my own version of a gradient ascent algorithm
using the Newton-Raphson method or another comparable method. I can
then validate my implementation of this algorithm by using test functions
for which I know the correct answer and also by comparing my code’s results
with several of MATLAB’s built-in functions.

Furthermore, once the GLM and the GQM have been validated they can
be used to validate the NIM by choosing either linear or quadratic forms for
the upstream nonlinear functions, respectively, and comparing the results
the these earlier models.

6 Testing

Testing of the various models will be performed using two metrics: k-fold
cross validation and fraction of variance explained.

k-fold cross-validation will be used on the log-likelihood of the model
LLx, minus the log-likelihood of the “null” model LL0. The null model
predicts a constant firing rate independent of the presented stimulus. This
testing will be performed on all models at the end of the project.

The fraction of variance explained is a scalar metric that compares the
mean square error of the model R to the variance of the output Y :

FV E = 1− MSE(R)

V ar[Y ]
(13)

The simplest model of R is the constant function equal to the mean of Y .
In this case the mean square error of R is equal to the variance of Y , and
the fraction of variance explained by our naive model is zero. However, if
our model perfectly predicts the values of Y , the mean square error of R is
equal to zero and the fraction of variance explained is equal to one.

7 Project Schedule and Milestones

The project schedule will be broken into two phases, roughly corresponding
to the fall and spring semesters.

PHASE I - October through December

• Implement and validate the LNP model using the STA (October)
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• Develop code for gradient ascent method and validate (October)

• Implement and validate the GLM with regularization (November-December)

• Complete mid-year progress report and presentation (December)

PHASE II - January through May

• Implement and validate the LNP model using the STC (January-
February)

• Implement and validate the GQM (January-February)

• Implement and validate the NIM with linear rectified upstream func-
tions (March)

• Develop software to test all models (April)

• Complete final report and presentation

8 Deliverables

At the end of the year I will be able to present the following deliverables:

• Implemented MATLAB code for all of the models - LNP-STA, LNP-
GLM, LNP-STC, GQM, NIM

• Implemented MATLAB code for the validation and testing of all the
models

• Documentation of all code

• Results of validation and testing for all the models

• Mid-year presentation and report

• Final presentation and report
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